OpenPlant Forum 2018: Engineering Plants for Bioproduction

Blog post by Dr Colette Matthewman

Over the past decade, synthetic biology has focussed much of its effort on microbial chassis as platform for bioproduction. The single cell simplicity and rapid life-cycles of these organisms, the prevalence of biological tools and the existing industry infrastructure for fermentation have made microbes a tempting playground for synthetic biologists wishing to make a range of chemicals and biomolecules, from flavours and fragrances to distributed manufacturing of highly complex metabolites for medicine, and an increasing number of companies are finding success in this arena (e.g. Ginkgo Bioworks, Amyris, Evolva, Antheia).

More recently, plants have been showing serious promise as viable production platforms for complex chemicals and biomolecules which in many cases simply can’t be made in single celled microbes. This year, the OpenPlant Forum explored some of the latest advances in plant bioproduction with inspiring talks from invited speakers and OpenPlant researchers highlighting a promising and exciting future for plant synthetic biology.

OpenPlant post-doc Ingo Appelhagen presents his work on anthocyanin pigment production in plant cell cultures.

OpenPlant post-doc Ingo Appelhagen presents his work on anthocyanin pigment production in plant cell cultures.

The first morning of the Forum focused on tools for refactoring regulation and simple test platforms for plant synthetic biology. Prof. Ian Small (University of Western Australia) opened the meeting with a keynote on the potential for using engineered RNA bonding proteins to control organelle gene expression. OpenPlant PI, Prof. Paul Dupree described research in his on engineering of polysaccharide structures in plants. We also had the first examples of plant production platforms: Dr Ingo Appelhagen presented his recently published work on the production of colourful anthocyanin molecules in plant cell cultures, while Dr Eva Thuenemann introduced the HyperTrans system developed in the Lomonossoff lab at the John Innes Centre for the transient expression of proteins in Nicotiana benthamiana, a wild relative of tobacco. Eva is working on plant-based production of a protein that could be used in a vaccine against East Coast Fever, a devastating disease in cattle in Africa. The HyperTrans platform is used by the Lomonossoff lab and recently established company Leaf Expression Systems to produce therapeutic proteins and virus-like particles for vaccines, including recent work on a new vaccine for the eradication of Polio.

The afternoon session explored the cutting edge in production of complex plant-derived natural products in yeast, with a keynote from Prof. Christina Smolke (Stanford University), followed with an insight into the engineering of triterpene production in N. benthamiana by Dr James Reed in the Osbourn lab (John Innes Centre), recently reviewed in Plant Cell Reports. These projects rely heavily on chemical and enzymatic biodiversity in nature. Dr Sam Brockington (University of Cambridge) talked about harnessing the global network of botanic gardens for access to plant diversity for metabolic engineering and synthetic biology, introducing a global database of living plant, seed and tissue collections called “Plant Search” – a perfect sedgeway into a panel discussion on Harnessing Global Biodiversity where Sam was joined by Dr Nicola Patron (Earlham Institute), Mr David Rejeski (Environmental Law Institute), and Dr Jenni Rant (SAW Trust). The discussions ranged from public opinion on synthetic biology (explored through the Global Garden workshop) and benefit sharing and dematerialisation, through to how blockchain (like the bitcoin) is being used in environmental contexts and whether blockchain technology trends can be applied to create/assign value for biodiversity.

Prof. Ralf Reski with his moss bioreactors

Prof. Ralf Reski with his moss bioreactors

Day two of the Forum continued on a theme of “Tools for Metabolic Engineering” with Prof. Claudia Vickers (University of Queensland) opening by introducing the Future Science Platform in Synthetic Biology that she leads at CSIRO, as well as numerous tools developed in her research lab. Claudia was followed by a trio of OpenPlant postdocs describing analysis to unravel the genetics of divergent metabolic pathways in Brassicaceae (Dr Zhenhua Liu), a search for new synthetic biology tools based on diversity of natural triterpene oxidation (Dr Michael Stephenson) and tools for engineering Marchantia’s chloroplasts (Dr Eftychis Frangedakis).

Moving on from the tools, we explored further plant-based bioproduction platforms, starting with an inspirational keynote from Prof. Ralf Reski (University of Freiburg) on the moss Physcomitrella patens that Ralf’s lab has established as a production platform for biopharmaceuticals, leading to foundation of the company Greenovation, which produces moss-aGal (agalsidase) for the treatment of Fabry disease, a rare but painful and potentially deadly disease. Subsequently, we heard from Prof. Alison Smith (University of Cambrige) about “Designer algae” and work towards predictable metabolic engineering in microalgae, and from Dr Eugenio Butelli (John Innes Centre) about the Tomato as a biofactory for making health promoting flavonoids.

The Forum was wrapped up for this year with a session on Sharing and Techno-Social Platforms, with an introduction from OpenPlant’s Prof Jim Haseloff, followed by Dr Linda Kahl (BioBricks Foundation) on the latest with the Open Material Transfer Agreement (Open MTA) which has been developed in collaboration with OpenPlant to enable sharing of DNA parts (publication coming soon!). Next up, Dr Joanne Kamens from not-for-profit plasmid distribution company, Addgene, revealed the freshly launched plant resource page and spoke about the upcoming adoption of the Open MTA as an option under which plasmids can be shared. Finally, Dr Richard Sever from bioRxiv spoke about preprint opportunities for synthetic biology.

Join us in Cambridge for the OpenPlant Forum 2019 | 29 – 31 July

Save the date!

OpenPlant Forum 2016

Seven Developments in SynBio: Science, Patents and Ethics | OpenPlant Forum 2016

by Steven Burgess and Cindy Chan

How researchers answer questions around innovation, patenting and open access will have a profound impact on the development of the synthetic biology community. These issues were at the center of discussions during the OpenPlant Forum last month as researchers gathered at the John Innes Centre to present the latest progress in plant synthetic biology. Here Steven and Cindy provide a review of seven key developments presented at the meeting.

See article by Steven Burgess and Cindy Chan on the PLOS Synthetic Biology Blog

OpenPlant Forum 2016: Reprogramming Agriculture with SynBio

Many early efforts of synthetic biology have focussed on the engineering of microbes, especially for the growing biotech industry. In contrast to single cell microbes, multi-cellular organisms such as plants present a higher level complexity, take longer to engineer, and the regulatory system can be a tough and time consuming to navigate - but there are huge opportunities for delivering social, environmental and economic benefits through efforts to reprogramme plants and agriculture. They come with their own distinct set of ethical, legal, social and economic questions. The above were topics central to discussions at the 2016 OpenPlant Forum. Over one hundred people from various disciplines assembled to hear about some of the recent advances in crop and feedstock engineering, discover the latest tools to support innovation in this field, and to reflect on and discuss the ethical, legal, social, and economic questions.

Events kicked off at the John Innes Conference Centre, Norwich, with a networking evening and industry showcase, including two exciting new local developments: Martin Stocks (Plant BioScience Ltd) talked about Leaf Systems®, a translational facility being built to scale up protein and chemical production in plants; and Tony West gave a preview of the new DNA Foundry at the Earlham Institute, which has since been officially launched.

The first full day of the Forum opened with a double bill of keynotes from Allan Green (CSIRO) and Jonathan Napier (Rothamsted) talking about their impressive efforts engineering oilseed crops. It continued with a case study of AB Sugar's Wissington sugarbeet processing site, providing an inspiring processing model for maximising production from a feedstock and it's byproducts. This was followed by a cross-discipline exploration of some recent advances and future opportunities for reprogramming agriculture. In the final session of the day, Spencer Adler (Bioeconomy Capital) gave an investors perspective, followed by a lively debate on the ethical, legal, social and economic considerations of developments in this area. Discussions continued into the night at the conference dinner.

Day two grounded the discussions back in the technical, with a focus on tools to support synthetic biology, especially in plants. The day started with Tom Knight opening the curtains to an exhilarating view of Ginkgo Bioworks and some of their latest developments. Moving back to plant chassis, advances establishing the liverwort Marchantia as a simple plant chassis were showcased alongside work developing tools and methods for other plant chassis. The final session of the event focussed on tools to enable innovation through sharing of knowledge, data and materials - a key focus of the OpenPlant Synthetic Biology Research Centre.

Steven Burgess and Cindy Chan have published a detailed write-up of the OpenPlant Forum on the PLOS Synbio Community blog: Seven Developments in SynBio: Science, Patents and Ethics | OpenPlant Forum 2016

Blog post written by Colette Matthewman Photos by Matt Heaton

OpenPlant Forum 2015: blog by Dr Colette Matthewman


A number of events took place in Cambridge as part of Cambridge Open Technology Week. At the heart of the activities was the OpenPlant Forum a two-day meeting bringing together experts from a range of sectors to discuss developing open technologies for plant synthetic biology.

What was remarkable about the Forum was the strikingly varied and multi-disciplinary agenda covering intellectual property, policy and regulation, responsible research and innovation and open science as well as an excellent scientific programme.

The first day of the Forum focussed on foundational technologies that facilitate exchange and freedom to operate in research environments. The second day concentrated on application of these technologies to trait engineering, and open source routes to innovation and industry.

In between talks, Dr Jenni Rant showcased outputs from Science Art Writing (SAW) Trust synthetic biology public engagement workshops, including a Marchantia themed game.

Kicking off events, Tom Knight, a computer engineer now widely considered the ‘father of synthetic biology’, talked about how synthetic biology aims to make an engineering discipline of biology. He commented that “biologists tend to like complexity, while engineers like it simple”.

Dr Nicola Patron described her recent efforts with OpenPlant and the international community, to bring together a common standard for the assembly of plant DNA parts. Many of the scientific talks described DNA parts collections for gene regulation or for producing high value chemicals in plants.

Professor Anne Osbourn highlighted the value of genetic and chemical diversity in plants, explaining for example that plant P450 enzymes can achieve things that test-tube chemistry can’t. Further examples were seen in talks by Dr Yang Zhang and Dr Stephanie Brown who are exploiting this plant natural diversity for production of heath promoting and anti-cancer compounds in tomato and yeast.

Openness was a running theme across the two days with social scientist Dr Jane Calvert emphasizing how open biology, open innovation and opening up are all critical to the future of synthetic biology. Professor Chas Bountra talked about his ground-breaking work in novel drug discovery, explaining that drug discovery is too expensive, risky and slow, and open science and pooling of resources can speed up research and share the risks. Dr Linda Kahl outlined the need for new legal tools to improve freedom to operate for researchers in both academia and industry, and her work to create an Open Material Transfer Agreement in collaboration with OpenPlant.

Next year the OpenPlant Forum comes to the Norwich Research Park, from 25 – 27 July 2016.

OpenPlant is funded by the Biotechnology and Biological Sciences Research Council (BBSRC) and the Engineering and Physical Sciences Research Council (EPSRC).

Source: OpenPlant Forum 2015: blog by Dr Colette Matthewman