[Closes 22 Mar 2018] Vacancy for Lecturer or Senior Lecturer in Synthetic Biology at University of Edinburgh

Vacancy: Lecturer or Senior Lecturer in Synthetic Biology

We seek an excellent scientist and inspiring teacher who uses synthetic biology methods in research programmes such as genome engineering, biotechnology, metabolic engineering, genetic circuit design and engineering (both in vivo and cell free), bio-sensing, multi-cellularity and tissue engineering, regenerative medicine, novel vaccine development or addresses key questions in molecular or cell biology. The Edinburgh Genome Foundry’s facilities for automated DNA assembly can support large-scale synthetic biology and synthetic genomics research and we would be particularly enthusiastic about research programmes that took advantage of these capabilities.

You will have the ability, enthusiasm and breadth of vision required to be a future leader in this rapidly moving field. You will pursue an independent research programme, working collaboratively and leading a team. You must have an established track record of relevant publications and the potential to win future investment in research, and will be expected to engage with both commercial and public research users and funders. You will be enthusiastic about teaching and student-centred learning for both undergraduate and postgraduate students.

The University of Edinburgh is a vibrant, research-driven community offering opportunities to work with internationally leading academics whose visions are shaping tomorrow’s world. The School of Biological Sciences is one of the UK’s largest and most highly rated life sciences departments, providing an innovative environment for research and teaching with a strong emphasis on interdisciplinary research. SynthSys, the Centre for Synthetic and Systems Biology, is one of the largest groupings of systems and synthetic biologists in the UK with expertise ranging from microbes to mammalian cells working on applications in biotechnology and medicine as well as contributing to foundational and fundamental research. SynthSys is highly multidisciplinary with members from the schools of engineering, informatics, chemistry, physics, social sciences, medicine as well as biological sciences. You will join a team of group leaders working at the interface between molecular cell biology and quantitative science, with strong links in biotechnology.

Informal enquiries: Prof Susan Rosser susan.rosser@ed.ac.uk

This posts are full time and open ended.

Salary: UE08 £39,992 - £47,722 per annum / UE09: £50,618 - £56,950 per annum

Closing Date: Thursday 22nd March 2018 at 5pm (GMT)

To apply: www.vacancies.ed.ac.uk search for #042732

Postdoc representatives sought for University of Cambridge Open Research Working Group

2000px-Open_Access_PLoS.svg.png

The Open Research Working Group will convene in Lent Term 2018 to define and develop the University’s approach to open research, including open access to publications and open research data. The working group is seeking two postdoc representatives with some background or interest in open research, one from STEM and one from AHSS.

This opportunity may appeal to those working in the open technology area, with OpenPlant or who have received OpenPlant or SynBio Fund support and have some interest in or experience of open research.

Remit of the Working Group

The Open Research Working Group will be convened in the Lent Term 2018 to clarify the University’s needs and expectations on Open Research. The group will define and agree on the University’s stance on Open Research and help shape service, infrastructure and policy developments in response to the Open Research agenda. Broadly speaking, Open Research is taken to mean the overall drive towards sharing (data, method, outputs) of University research, and the changing research and dissemination practices intended to maximise public access to these. Open Research is inclusive of Open Access to research publications and doctoral theses and the processes and planning involved in research data management which can, where appropriate, lead to the sharing of Open Data.

Level of Commitment

The working group is a short-term commitment of 4-5 meetings between Feb and June 2018. It is an excellent opportunity to voice the perspective of postdocs in how the University addresses this important topic, as well as valuable experience for an academic careers.

Contact james.brown@admin.cam.ac.uk if you are interested in this opportunity.

Apply now for eLife Innovation Sprint - bringing cutting-edge technology to open research

elife-full-color-horizontal.png

The eLife Innovation Sprint is a two-day challenge on 10-11 May 2018 for developers, designers, technologists and researchers to collaboratively prototype innovations that bring cutting-edge technology to open research.

The eLife Innovation Initiative have been working to improve research transparency and accessibility, and accelerate discovery in the life sciences, by developing open-source technologies in collaboration with the wider community. They have heard many excellent ideas for transforming how the latest science is shared, built upon and recognised, and  they want to create a space that would help translate these ideas into action.

By bringing ideators, creators and users together for the Innovation Sprint, they hope to provide space, time and access to diverse skill sets for the community to develop their ideas into prototypes and forge new collaborations.

eLife invite you — whether change maker or web wrangler, UX champion or data tinkerer — to apply to participate in person.

Apply now >>

Applications will close at 9am GMT on March 5 2018, and we aim to communicate the outcome of each application by March 23 2018.

[Closes 16 April] Accepting applications for the 2018 Cold Spring Harbor Laboratory Summer Course in Synthetic Biology

siteimage512x512.jpg

We are now accepting applications for the 2018 Cold Spring Harbor Laboratory Summer Course in Synthetic Biology. We encourage you, your colleagues, and/or your trainees to apply if…

  • You are a scientist whose training is well underway (senior graduate student to junior faculty and beyond).
  • You are interested in steering your research in a new direction, towards synthetic biology.
  • You are interested in a multi-disciplinary approach to biology and bioengineering. We encourage students of all backgrounds, whether the very biological or very theoretical, to apply!
  • You work in the field of synthetic biology and are interested in new techniques.

Since the course began in 2013, industry professionals, graduate students, postdocs, science educators, and junior faculty have completed our immersive two-week laboratory class. The Course will focus on how the complexity of biological systems, combined with traditional engineering approaches, results in the emergence of new design principles for synthetic biology. Students will work in teams to learn the practical and theoretical underpinnings of cutting edge research in the area of Synthetic Biology. In addition, students will gain a broad overview of current applications of synthetic biology by interacting with a panel of internationally-recognized speakers from academia and industry during seminars, lab work, social activities.

Scholarships: Several stipend awards are available for applicants who are accepted into the course. Please read details about the available stipend awards at: https://meetings.cshl.edu/sponsors.aspx?course=C-SYNBIO&year=18

In order to be considered for an award, you must specifically reference which one you are eligible for in the Stipend Request section of your application.

[Closes 28 Feb] Early registration now open for Crossing Kingdoms: an international synthetic biology symposium

image.png

Crossing Kingdoms is an international 3 day-event bringing together scientists from the microbial, animal and plant fields to present their results and highlighting how knowledge from these different life forms provide tools for synthetic biology innovations and applications.

Registration for Crossing Kingdoms is now open.

 

Abstract submission

Submissions for oral and poster presentations  are welcome.  To submit a pdf or Word file containing your abstract please complete the electronic submission form here.

List of confirmed speakers:

Organisers:

Alain Tissier (Halle) and Philip Wigge (Cambridge).
Supported by the German Ministry of Education and Research (BMBF) and the UK Biotechnology and Biological Sciences Research Council (BBSRC) and ERA-SynBio.

Download the conference poster for your noticeboard

 

[Closes 12 Mar 2018] OpenPlant and SynBio SRI seek new Coordinator - apply now!

The University of Cambridge is seeking a Co-ordinator for two Synthetic Biology research initiatives. The role-holder would work 50% to support the OpenPlant Synthetic Biology Research Centre and 50% with the Synthetic Biology Strategic Research Initiative (SynBio SRI).

We are seeking a Co-ordinator for two Synthetic Biology research initiatives at the University of Cambridge. The role-holder would work 50% to support the OpenPlant Synthetic Biology Research Centre and 50% with the Synthetic Biology Strategic Research Initiative (SynBio SRI). The purpose of the role is to help develop and implement a strategy that will enable both initiatives to become known leaders in the field and sustainable in the longer term.

OpenPlant (http://openplant.org) is a consortium funded by BBSRC and EPSRC comprising 20 labs spanning the University of Cambridge, John Innes Centre and the Earlham Institute (Norwich). The work of the Research Centre is intended to promote novel research on tools and applied traits for plant synthetic biology, open sharing of foundational technologies, and responsible innovation. The role-holder will work with the OpenPlant Directors and Management Group, including the OpenPlant Project Manager based in Norwich, to co-ordinate a variety of activities within the Research Centre.

The SynBio SRI (http://synbio.cam.ac.uk) aims to catalyse interdisciplinary exchange between engineering, physics, biology and social sciences to advance Synthetic Biology at the University of Cambridge. The role-holder will work with the SRI Co-Chairs and Steering Committee to develop, plan and deliver the SRI's vision and strategy. They will facilitate efforts to promote development of open technologies, build shared resources, and provide a hub for networking and discussion.

Responsibilities will also include co-ordinating seed funding competitions such as the Biomaker Challenge and OpenPlant Fund; organising formal and informal scientific meetings and forums; developing and managing relationships with stakeholders within and external to the University; seeking small and large-scale funding for future activities. The role-holder is additionally responsible for ensuring that synthetic biology activities in Cambridge are actively communicated and promoted, and is supported by the part-time SynBio SRI Events and Communication Co-ordinator.

The successful candidate will have a PhD in a relevant field and knowledge of Synthetic Biology research, policy and practice. They will have the ability to foster relationships with and between academics at all levels in an interdisciplinary context, and build partnerships with companies, funders and policy makers. A successful track record in attracting research funding would be advantageous. Excellent organisational and communications skills are essential, together with proven problem-solving skills and initiative.

 For more information and to apply >>

[Closes 20 Feb 2018] Synthetic Biology Postdoc at Earlham Institute

OpenPlant PI Dr Nicola Patron is looking for a Postdoctoral Research Scientist to work on a European Research Area (ERA) CoBioTech collaborative project based in the Patron Lab at the Earlham Institute. The project will use will use synthetic biology, comparative transcriptomics, metabolic engineering and genome editing/engineering techniques to develop plants and fungi as low-cost, sustainable production platforms for biosynthesis of insect pheromones..

Apply now >>
Closing date 20th February 2018

SUSPHIRE-text.png

[Closes 14 March 2018] NSF-USDA-BBSRC Joint Funding Opportunity to Develop Breakthrough Ideas and Enabling Technologies to Advance Crop Breeding and Functional Genomics

The National Science Foundation (NSF) Biological Sciences Directorate (BIO), the U.S. Department of Agriculture (USDA) National Institute of Food and Agriculture (NIFA) and the UK's Biotechnology and Biological Sciences Research Council (BBSRC) have established a joint funding opportunity to support the development of breakthrough technologies that will enable significant advances in crop breeding. This opportunity aims to make high impact changes in the ability to translate basic knowledge of plant genomics to practical outcomes in crops of economic importance to the participating countries.

This NSF-BIO, USDA-NIFA and BBSRC Joint Activity is soliciting Early Concept Grants for Exploratory Research (EAGER) proposals to support development of breakthrough ideas and technologies to speed the development for new crop varieties.

See more information below and at this page >>

There remain significant bottlenecks to improving crop varieties even if new traits or natural variants are identified, such as producing hybrids, understanding recombination, and epigenetic inheritance as examples. Translation of basic knowledge to practical outcomes can be accelerated by key emerging technologies that exploit genomics rapidly and effectively. This EAGER opportunity invites proposals to overcome these barriers to crop breeding in highly innovative and transformative ways. Investigators considering this opportunity should articulate how the enabling technologies would be used to improve crop breeding.

Areas of research that await breakthrough advances and are appropriate for this EAGER opportunity include, but are not limited to, the following:

  • Advancing genome editing technology to generate new phenotypes for greater genetic gain
  • Achieving reliable and high throughput production of doubled haploids from genotypes that are currently recalcitrant to chromosome doubling to accelerate the breeding process in cereals and other crops
  • Controlling and understanding meiotic recombination to tap into inaccessible genetic resources in areas of low recombination and enabling whole genome manipulation
  • Modifying epigenetic inheritance to facilitate phenotypic changes related to environmental responses
  • Understanding mechanisms of heterosis, thereby generating and exploiting hybrid vigor for crop improvement

For this EAGER opportunity, emphasis should be on developing enabling technologies that will impact crops or model crop systems. Projects that focus solely on sequencing will not be considered. Funded projects relevant to the goals of the International Wheat Yield Partnership (IWYP) will be invited to become IWYP Aligned Projects.

Proposed studies should be potentially transformative and must be considered "high-risk, high-payoff" to achieve the goal of making technological breakthroughs to promote crop breeding. Studies should be compatible with the budget (up to $300,000 for US components and up to £200,000 for UK components) and time limits (2 years) of the EAGER funding mechanism. For collaborative US/UK EAGER projects, BBSRC will fund UK researchers up to £200,000 and NSF or NIFA will fund US researchers up to $300,000 including indirect costs. US only EAGERS are limited to $300,000 total including indirect costs. Further details are provided below for budgetary limits for UK partners. EAGER proposals may originate from US-UK partnerships or from US-only applicants. EAGERs solely involving UK applicants are not permitted. For more information on EAGERs, please review NSF Proposal & Award Policies & Procedures Guide (PAPPG).

More information >>

 

Call for Proposals: 5th International Synthetic & Systems Biology Summer School - SSBSS 2018

The Synthetic and Systems Biology Summer School (SSBSS) is a full-immersion five-day residential summer school on cutting-edge advances in systems and synthetic biology with lectures delivered by world-renowned experts. The 2018 Summer School will take place July 25-29, 2018 at Certosa di Pontignano in Tuscany, Italy.

The school provides a stimulating environment for students (from Master students to PhD students), Post-Docs, early career researches, academics and industry leaders. Participants will also have the chance to present their results (with Oral Talks and Posters), and to interact with their peers, in a friendly and constructive environment.

Screen Shot 2018-01-09 at 14.44.26.png

 

Deadlines

Application: March 31, 2018

Oral Presentation/Poster Submission: March 31, 2018

Notification of Decision for Oral/Poster Presentation: April 28, 2018

Register here >>

Keynote Speakers

* PATRICK YIZHI CAI, University of Manchester, UK

* JOHN GLASS, J. Craig Venter Institute, USA

* PHILIPP HOLLIGER, MRC Laboratory of Molecular Biology, Cambridge, UK

* JENS NIELSEN, Chalmers University of Technology, Sweden

* HARRIS WANG, Columbia University, USA

* RON WEISS, MIT, USA

* LUCA ZAMMATARO, Yale University, USA

Speakers 

* Barbara Di Camillo, University of Padova, Italy

* Simone Furini, University of Siena, Italy

* Emanuele Domenico Giordano, University of Bologna, Italy

* Rodrigo Ledesma-Amaro, Imperial College London, UK

* Velia Siciliano, Italian Institute of Technology, Italy

Links

Prof Giles Oldroyd joins Sainsbury Lab to engineer nitrogen-fixing cereals

Prof Giles Oldroyd, an OpenPlant PI who directs a Bill and Melinda Gates Foundation programme of research to engineer nitrogen-fixing cereals has recently joined the Sainsbury Lab at University Cambridge after 15 years at the John Innes Centre in Norwich.

Prof. Giles Oldroyd is a leading investigator in plant-symbiotic interactions, with a particular focus on the signalling processes that allow the establishment of nitrogen-fixing and arbuscular mycorrhizal associations. His work has provided the genetic underpinnings to understand the symbiosis signalling pathway that allows rhizobial recognition in legumes and mycorrhizal associations in most plants. He explained his interests in an introductory post on the SLCU website:

"I spent 15 years working at the John Innes Centre, attempting to understand how plants perceive symbiotic microorganisms present in the rhizosphere. Having contributed to a detailed understanding of symbiosis signalling, I now want to understand how this signalling process activates the developmental changes in the root leading to the formation of a nodule and intracellular bacterial infection."

I am very excited by the prospect that some day this research could address one of the greatest limitations to agricultural productivity
— Prof Giles Oldroyd, SLCU

Prof Oldroyd now leads an international programme funded by the Bill and Melinda Gates Foundation and the BBSRC that is attempting to engineer cereal recognition of rhizobial bacteria as the first step towards engineering nitrogen-fixing cereals.

"There remains much to be discovered before we are likely to be able to transfer nitrogen fixation to cereals. However, I am very excited by the prospect that some day this research could address one of the greatest limitations to agricultural productivity and I am particularly motivated by the fact that the beneficiaries of my work could be some of the poorest people on the planet."

The SynBio SRI welcomes the Oldroyd Lab to Cambridge and we look forward hearing more about their work in plant synthetic biology.

Prof Giles Oldroyd's homepage at SLCU >>

Essex Synthetic Biology Summer School: 2-6 July 2018

The Essex Synthetic Biology School (ESBS) is an intensive 5-day summer course targeting students and early career scientists interested in learning cutting edge experimental and computational methods to design and build biological systems directly from world-renowned experts, working with bacterial, yeast, plant and mammalian systems, in fields such as cancer and healthcare research, as well as industrial, agricultural and environmental synthetic biology.

Screen Shot 2018-01-09 at 14.32.50.png

Synthetic biology is an emerging research and industrial field aiming at designing and engineering biological systems with specific functions. To do that, it integrates methods and technologies from biology, chemistry, engineering, computer science and mathematics to streamline the process of designing, building and testing biological systems. In the last 10 years, synthetic biology has contributed many ground breaking scientific results, including the first synthetic cell and the first synthetic chromosomes, and industrial applications, including the production of drugs and biofuels.

The School, located at the University of Essex in the U.K., comprises 20 lectures and 5 laboratory sessions, focusing on building pathways in bacteria and yeast.

Learn more and register by 1 June 2018 >>>

[Closes 5 March 2018] 2018 CSIRO Synthetic Biology Future Science Fellowships

The CSIRO Synthetic Biology Future Science Platform (SynBioFSP) is pleased to announce the opening of the second round of CSIRO Synthetic Biology Future Science Fellowships. The scheme aims to attract outstanding national and international early-career post-doctoral researchers (equivalent to Australian Academic Levels A and B, or in exceptional circumstances, Level C) to expand Australian research capacity in synthetic biology. A key element of the SynBio FSP is establishment of a collaborative community of practice extending across CSIRO and Australia more broadly, and linking into international efforts in the field. Research projects must demonstrate an ability to build Australian capacity in synthetic biology.

Fellowships will be hosted at a Host Organisation (usually an Australian University, but other Australian research organisations may also be eligible) and will be a partnership between the Fellow, CSIRO, and the Host Organisation. Fellows will be employed by the Host Organisation but will maintain a strong linkage to CSIRO through a partnering CSIRO Mentor(s) and various joint activities designed to support development of a synthetic biology community of practice across Australia. Fellows will have a Visiting Scientist appointment at CSIRO and may spend a portion of time physically located within a CSIRO research group if appropriate for the Fellowship project.

The SynBio FSP is built on a philosophy of responsible development of synthetic biology technology, striving for ethical outcomes and working within the bounds of social acceptance. Project proposals in the social sciences, as well as in lab-based research, are encouraged.

How to apply?

Further information and application instructions for the Fellowships are available at:https://research.csiro.au/synthetic-biology-fsp/work-with-us/synbio-fellowships/

Applications must be submitted by 5pm Australian Eastern Standard Time, Monday 5th March 2018.

Further enquiries can be directed to: SynBioFSP@csiro.au  

We strongly encourage women, people of Australian Aboriginal and/or Torres Strait Islander descent, and other minority groups to apply.

OpenPlant Fund supports open source multi-fluorescence imaging system published in PLOS One

The advent of easy-to-use open source microcontrollers, off-the-shelf electronics and customizable manufacturing technologies has facilitated the development of inexpensive scientific devices and laboratory equipment. In this study supported by the OpenPlant Fund, Isaac Nuñez, Tamara Matute and collaborators describe a multi-fluorescence imaging system that integrates low-cost and open-source hardware, software and genetic resources.

2018-01-06--1515266846_1655x563_scrot.png

The illumination and optics system consists of readily available 470 nm LEDs, a Raspberry Pi camera and a set of filters made with low cost acrylics and the box design and flexible focusing allows imaging in scales ranging from single colonies to entire plates. The team also developed a set of genetic components (e.g. promoters, coding sequences, terminators) and vectors following the standard framework of Golden Gate, which allowed the fabrication of genetic constructs in a combinatorial, low cost and robust manner. In order to provide simultaneous imaging of multiple wavelength signals, they screened a series of long stokes shift fluorescent proteins that could be combined with cyan/green fluorescent proteins for 3-channel fluorescent imaging.

Open source Python code was developed to operate the hardware to run time-lapse experiments with automated control of illumination and camera and a Python module to analyze data and extract meaningful biological information. To demonstrate the potential application of this integral system, the team tested its performance on a diverse range of imaging assays often used in disciplines such as microbial ecology, microbiology and synthetic biology.

Isaac Nuñez appreciated the opportunity to work on the project with the support of OpenPlant: “OpenPlant funds were important because we are generating a real impact in research and teaching through interdisciplinarity. This project not only introduced us to new modes of work based on good practices, documentation and open source licensing but also allowed us to learn from different fields such as open hardware, design, FOSS and advanced DNA fab methods.”

In order to highlight the benefits of employing an open framework, the team formed an industry partnership with the Open Source company Backyard Brains (TM), which has significant experience in creating and distributing open educational and research technology for neuroscience in Latin America and worldwide (backyardbrains.com, backyardbrains.cl). In collaboration, the team assessed the potential use of their imaging statuon in a high school environment.  Author Tamara Matute explained “We have been able to use these resources in workshops in high schools, community spaces and cultural centres; and implement advanced practicals to teach in vitro synbio, DNA fab and microbiology. The open source and low cost nature of the resources has allowed citizens to better understand the principles behind gene expression analysis and modelling”

Together, their results demonstrate the successful integration of open source hardware, software, genetic resources and customizable manufacturing to obtain a powerful, low cost and robust system for education, scientific research and bioengineering. The paper was selected as Editor's Pick for the PLOS Open Source Toolkit Channel in December 2017.

Original Publication: Nuñez, I., Matute, T., Herrera, R., Keymer, J., Marzullo, T., Rudge, T., & Federici, F. (2017). Low cost and open source multi-fluorescence imaging system for teaching and research in biology and bioengineering. PLOS One, 12(11), e0187163.

 

journal.pone.0187163.g001.PNG

Synthetic Biology and the Senses: volunteers wanted for Cambridge Science Festival

CamSciFestival.jpg

Synthetic biology can bring cutting edge biotechnology into everyday experiences through people's senses by harnessing the wonderful variety of colours, scents, tastes and textures produced in nature. We are looking for enthusiastic volunteers and interactive exhibits or colourful posters to illustrate the theme of 'Synthetic Biology and the Senses' at the Cambridge Science Festival Life Science Marquee on Sat 17 March 2018.

'Synthetic Biology and the Senses' is a joint exhibit by OpenPlant and the SynBio SRI and will run 10:00-16:00 on Sat 17 March 2018 on the Downing Site Lawn, with volunteers required before and after for set-up and packing down. 

We are looking for volunteers to help out and talk to visitors as well as proposing activies or exhibits of their own. In 2017 we featured exhibits including:

  • Bioluminescent bacteria

  • Fabrics dyed with synthetic ink from bacteria

  • Micro-organisms expressing plant metabloic pathways to produce rose and patchouli scents

  • Design-a-plant

  • Dave the DNA Robot

 We require volunteers for various times of the day and would be very happy to have 4 people at the exhibit at all times. Two hour slots are available and volunteers can stay as long as they wish. Lunch and Science Festival T-Shirt provided!

Please register via this form.

 

 

Marchantia polymorpha genome published with OpenPlant co-authors

Marchantia polymorpha genome published with OpenPlant co-authors

Insights into Land Plant Evolution Garnered from the Marchantia polymorpha Genome.

Bowman, J.L., Kohchi, T., Yamato, K.T., Jenkins, J., Shu, S., Ishizaki, K., Yamaoka, S., Nishihama, R., Nakamura, Y., Berger, F., Adam, C., Sugamata Aki, S., Althoff, F., Araki, T., Arteaga-Vazquez, M.A., Balasubrmanian, S., Barry, K., Bauer, D., Boehm, C.R., Briginshaw, L., Caballero-Perez, J., Catarino, B., Chen, F., Chiyoda, S., Chovatia, M., Davies, K.M., Delmans, M., Demura, T., Dierschke, T., Dolan, L., Dorantes-Acosta, A.E., Eklund, D.M., Florent, S.N., Flores-Sandoval, E., Fujiyama, A., Fukuzawa, H., Galik, B., Grimanelli, D., Grimwood, J., Grossniklaus, U.

Cell 171.2 (2017): 287-304.

https://doi.org/10.1016/j.cell.2017.09.030

[Closes 2 Jan 2018] Postdoc in Synthetic Biology at Newcastle University

Newcastle University are seeking a highly motivated experimental synthetic biology researcher to join Dr Angel Goñi-Moreno’s team at the Interdisciplinary Computing and Complex BioSystems (ICOS) group and the Centre for Synthetic Biology and the Bioeconomy of Newcastle University. You will work on the project “SynBio3D: Establishing the engineering fundamentals of three-dimensional synthetic biology”.

This project seeks to integrate spatial constraints such as distances and molecular crowding into the design and construction of gene regulatory circuits. Each gene sequence and each protein may need a specific physical address in the spatial frame of a cell for optimal performance (see http://pubs.acs.org/doi/abs/10.1021/acssynbio.6b00397 ), a fundamental question to be addressed by the project. This will bring spatial resolution to synthetic biology. Single molecules and DNA components will be tracked inside living cells. This project offers a fantastic playground for a researcher in synthetic biology to conduct highly novel research.


You will have a PhD awarded, or be close to obtaining one, with a significant molecular biology, genetic engineering or related component. You will have skills in the construction and validation of synthetic genetic circuits in bacterial cells. You will have knowledge in genome editing techniques. You will have experience in using fluorescence microscopy and, ideally, the visualization of gene expression constituents in individual cells. Experience in super-resolution microscopy is not essential, but will be positively considered. You will possess strong interests in the application of single-molecule tracking to synthetic biology problems.

You will need to be able to work independently as well as part of a team. Good communication skills are essential – our team includes computer scientists, engineers, biochemists, physicists and molecular biologists. Working under the supervision of senior colleagues, you will develop and initiate new collaborations both internally and externally. You will need to write up research results as well as to present our developments in national and international conferences and meetings. You will contribute to identify potential areas of research within the project and develop leadership skills.

The post is available fixed term for 24 months with start date as soon as possible.
Interviews will take place in January 2018, exact date to be confirmed upon invitation.

More information >>

[Closes 14 Dec 2017] Academies Partnership in Supporting Excellence in Cross-disciplinary research awards (APEX Awards)

In partnership with the British Academy, the Royal Academy of Engineering and the Royal Society (‘the Academies’) and with generous support from the Leverhulme Trust, the APEX award (Academies Partnership in Supporting Excellence in Cross-disciplinary research award) scheme offers established independent researchers, with a strong track record in their respective area, an exciting opportunity to pursue genuine interdisciplinary and curiosity-driven research to benefit wider society.

The objectives of this scheme are to:

  • support outstanding interdisciplinary research which is unlikely to be supported through conventional funding programmes 
  • promote collaboration across disciplines, with a particular emphasis on the boundary between science and engineering and the social sciences and humanities
  • support researchers with an outstanding track record, in developing their research in a new direction through collaboration with partners from other disciplines
  • enable outstanding researchers to focus on advancing their innovative research through seed funding

See more information and apply by 14 Dec 2017 >>

[Deadline 15 Dec 2017] Faculty Openings at Northwestern Center for Synthetic Biology

The Feinberg School of Medicine at Northwestern University invites applications for a tenure-track position at the rank of Assistant Professor in the Center for Synthetic Biology

Applicants should have a PhD and postdoctoral experience in a field related to synthetic biology and should have research plans that apply synthetic biological approaches to biomedical goals. Ideal candidates should also demonstrate strong communication and leadership skills, as well as an ability to contribute actively to a rapidly growing Center.

Northwestern University has recently started the Center for Synthetic Biology as a university-wide initiative to formalize and grow Synthetic Biology as a research theme. Northwestern University offers superb start-up packages with a collegial and collaborative scientific environment that is rich with core facilities, robust cross- disciplinary graduate training programs, and diverse expertise.

Candidates should have a Ph.D. and/or a M.D. degree and postdoctoral experience. Salary is commensurate with experience and accomplishment.

Deadline: review of received applications will start December 15, 2017, and will continue until the position is filled. 

More information  >>

Apply >>